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Abstract We study how standard auction objectives in sponsored search markets are
affected by refinement in the prediction of ad relevance (click-through rates). As the
prediction algorithm takes more features into account, its predictions become more
refined; a natural question is whether this is desirable from the perspective of auction
objectives. Our focus is on mechanisms that optimize for a convex combination of
economic efficiency and revenue, and our starting point is the observation that the
objective of such a mechanism can only improve with refined prediction, making
refinement in the best interest of the search engine. We demonstrate that the impact
of refinement on market efficiency is not always positive; nevertheless we are able to
identify natural — and to some extent necessary — conditions under which refinement
is guaranteed to also improve economic efficiency. Our main technical contribution is
in explaining how refinement changes the ranking of advertisers by value (efficiency-
optimal ranking), moving it either towards or away from their ranking by virtual
value (revenue-optimal ranking). These results are closely related to the literature on
signaling in auctions.
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1 Introduction

Sponsored search is a multi-billion dollar market; it enables contextual advertis-
ing, and generates revenue that supports innovation in search algorithms. Sponsored
search markets are also technically interesting and have been investigated theoreti-
cally from several perspectives [15], including auction theory [1, 7], game theory [6,
26], and bipartite matching theory [18].

Sponsored search markets exhibit an interesting interplay between auctions and
machine learning. Value is realized by the combination of two processes. First, the
search engine displays relevant ads to the user, i.e., ones that maximize the odds of
the user clicking on an ad. Second, users conduct a transaction with some probability
and of some value on the advertiser’s website, resulting in some (expected) value
per click to the advertiser. To facilitate the first process, the search engine uses a
combination of machine learning and historical data to estimate the relevance of an ad
to the user [12]. The second process is not directly observable by the search engine,
and so it uses an auction to elicit the value per click from the advertisers [1, 7]. It
then combines this with ad relevance to determine which ads to show to the user.

The recent explosion in data available to search engines makes it possible to
improve relevance prediction by seemingly endless refinements, taking into account
more and more features of the ad and the user. For example, consider a search query
‘pizza’ emanating from a user at an unspecified location within the Bay Area. By
adding a feature that pinpoints the user’s location within this region, it becomes clear
whether advertisements showcasing San Francisco pizza merchants are more rele-
vant than those for San Jose merchants or vice versa. This helps in deciding between
these ads.

Refinement is often perceived as a positive, win-win opportunity making everyone
better off — the users view more relevant ads and engage more with them, increasing
overall value.! However, to our knowledge this has not been rigorously studied. The
focus of this paper is to explore how standard objectives of truthful auctions, specifi-
cally welfare, behave with refinement of relevance prediction. We apply theory tools
in order to understand the high-stake effects of refinement decisions carried out by
sponsored search practitioners. We view this as a first step in better understanding the
interaction between machine learning and market design objectives, and in particular
the economic impact of more accurate learning (whether using more data as in this
paper, or other improvements such as novel learning algorithms). We also discuss the
connection to the signaling literature.

As our first contribution, we formalize the conventional wisdom that refinement
aids optimization. While it holds generally that refinement improves the economic
efficiency® of the efficiency-optimal mechanism, or the revenue of the revenue-
optimal mechanism [10], we build upon the latter to establish this result for all
truthful mechanisms that optimize some fixed convex combination of revenue and

I Clearly refinement should not be at the cost of using features that violate user privacy; in this work we
leave aside issues of privacy to focus on welfare considerations of refinement.
2Throughout this paper, we use the term efficiency for economic rather than computational efficiency.
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efficiency (trade-off optimal mechanisms). We discuss such mechanisms and jus-
tify why the search engine would be interested in a mechanism from this class in
Section 3.3 Thus, performing refinements always benefits the search engine.

What about the impact of refinement on social welfare? Our main contribution
(Section 4) is to study conditions under which refinement is simultaneously favorable
for the auctioneer and for market efficiency. Indeed, this is not always the case — the
twin objectives of revenue and efficiency are not necessarily aligned in the context of
refinement. We identify two assumptions under which refinement improves the effi-
ciency of every trade-off optimal mechanism. The first assumption is fairly standard,
and requires that the value-per-click distributions are i.i.d. and satisfy the monotone
hazard rate condition. The second assumption is arguably more restrictive, requiring
that refinements distinguish among advertisers, by causing the relevances of every
pair of advertisers for every query to either grow further apart or switch order. We
demonstrate the need for both assumptions by two examples (see Sections 2.2 and 5).

From a technical perspective, a main challenge is in understanding the mathe-
matical effect of refinement. The revenue-optimal auction and the efficiency-optimal
auction both rank advertisers by a monotone function of their bids and then use
this ranking to allocate them into available ad slots. The key difference is that the
two mechanisms employ different ranking functions to the bids. Refinement reduces
efficiency precisely when it causes the revenue-optimal ranking to drift apart from
the efficiency-optimal one. Under the assumptions mentioned above, the ranking of
every trade-off optimal mechanism is guaranteed to draw closer with refinement to
the efficiency-optimal ranking.

2 Model

In this section we present our model, which encompasses the standard model for
position auctions [15], while capturing the effect of prediction refinement.

A search engine sells m ad slots to n < m advertisers (also known as bidders).4
The slots appear alongside search results for a search query g. Advertiser i has a pri-
vate value v; € Ry for a click on his ad, and his value for an impression (appearance
of the ad) is v; multiplied by the corresponding click-through rate. This multiplica-
tive relation is often assumed in the literature [15] and is an important feature of the
model. Another standard assumption is that click-through rates are separable, i.e.,
can be multiplicatively separated into the advertiser’s relevance to query g, and the

3The mechanisms used in practice, though not truthful, have equilibria that are allocation- and revenue-
equivalent to the corresponding truthful mechanisms [6, 7]. Thus, we expect the gist our results to apply
to practically used mechanisms in equilibrium. This raises an interesting open problem: As we show,
refinement changes advertiser ranking in non-trivial ways; how do the equilibrium bids of the advertisers
change in response? Will their level of granularity mirror that of the refinement? In other words, how does
personalization affect the analysis of [6, 7]? The answer will depend on the informational assumptions of
the model.

4The assumption that m > n is without loss of generality. Advertisers/bidders are not to be confused with
users, who are the ones submitting queries and not part of the auction.
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effect of the slot position on the webpage. Note that if the click-through rates are 1
we get a standard m-unit auction.

Formally, the click-through rate for advertiser i’s ad in slot J given query g is
Pq.isj, where 1 > p,; > 0 is the query-advertiser relevance,” and 1 > sy > --- >
sm > 0 are the slot effects. (We omit ¢ from the notation where clear from the
context.) The relevance p; = p,; can thus be thought of as the slot-independent
click-through rate. We denote the value per impression in slot j by

Vi,j = PiViSj,
and the value per impression without the slot effect, called the realized value, by
ri = pivi.
The advertisers’ private values are assumed to be independently distributed

according to a publicly-known distribution F with positive smooth density f. Note
that the realized values are not i.i.d. and so the setting is not symmetric.

2.1 Prediction Schemes and Refinements

The machine learning system that predicts query-advertiser relevance has access to a
set of features: keywords, geographic location, time, user demographics, search his-
tory, ad text, etc. As is standard we assume features are discretized [12]. The system
partitions the set of query-advertiser pairs according to the features and produces a
relevance estimate for each part. For example, a part can consist of pizzeria advertis-
ers together with queries for “pizza” by users located in the Bay Area. We refer to
the output of the machine learning system as a prediction scheme:

Definition 1 (Prediction scheme) A partition 7 of all query-advertiser pairs with a
relevance prediction p, for every partr € T.°

Overloading notation we also denote the prediction scheme itself by 7. The pre-
diction given a search query ¢ is according to T if for every advertiser i, p,; = p;
where ¢ is the part in 7 containing the query-advertiser pair (g, 7).

Refinements A prediction scheme can be refined by refining its partition, i.e., divid-
ing coarse parts into finer subparts. This can be achieved by taking into account
additional features, such as more precise user location. For example, a subpart may
consist of pizzeria advertisers together with queries for “pizza” by users located in a
specific city within the Bay Area. We use the notational convention that T is a coarse
partition and 7 a coarse part, whereas T is a refined partition and ¢ is a subpart.

The relevence of a subpart can be very different from that of the original coarse
part, and for this reason refinement can completely alter the outcome of the ad

SThe assumption that Pq.i 7 01is without loss, to simplify the exposition.

OThis definition matches that of Ghosh et al.’s deterministic clustering scheme [11]. In general a prediction
scheme can be randomized, by including a distribution over relevance predictions for each part (cf. [8,
20]). Our results hold for randomized prediction schemes as well.
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auction. However, the coarse and refined relevance predictions must maintain the fol-
lowing relation. Given a query-advertiser pair belonging to a coarse part 7, there is a
certain distribution with which it falls within its different subparts. We require that in
expectation over this distribution, the refined relevance prediction equals the coarse
one. To summarize:

Definition 2 (Refinement) A prediction scheme T is a refinement of T if its partition
is a refinement of T’s partition, and the relevance of every coarse part 7 equals the
expected relevance over #’s subparts: p; = E,c7[p/].

(If the subpart 7 and its coarse counterpart ¢ are clear from context, we use p and
p to denote their relevance predictions.)

Distinguishing Refinements A natural subclass of refinements is those which dis-
tinguish among advertisers, thus enabling a better matching between them and the
search queries. We begin with a technical definition:

Definition 3 (Spread or flipped pairs) A pair of numbers a, b is spread or flipped
with respect to another pair c, d if

>1l>—,0or=2>12>

a
b .

QU o
QU o

Definition 4 (Distinguishing refinement) A prediction scheme T is a distinguishing
refinement of T if T is a refinement of T, and for every query ¢ and pair of adver-
tisers, their relevance pp, p» according to 7 is spread or flipped with respect to their
relevance pi, p» according to T (Fig. 1).

Intuitively, by flipping/spreading the relevance scores, distinguishing refinements
expose which advertiser is a better fit for the query, thus contributing to social wel-
fare. On the other hand, non-distinguishing refinements drive relevance scores closer,
thus revealing which advertisers are both a reasonable fit and thus competitors for the
query. This competition is then exploited to increase revenue at the expense of social
welfare, by sometimes allocating to the less relevant advertiser in order to extract
higher payment from the leading advertiser.

Remark 1 Our model is compatible with the standard assumption in theoretical study
of sponsored search auctions, by which click-through rates are estimated accurately.
It does not take into account that very fine prediction schemes may be inaccurate
due to the emergence of over-thin submarkets with insufficient data. This simplifying
assumption helps our goal of studying how finer prediction schemes affect auction

b
p2 pz pl p1 P1 p pl P2

Fig. 1 An example of relevance pair p;, pa spread (left) or flipped (right) with respect to p1, p2

b |
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objectives, by distilling this aspect of prediction refinement from various machine
learning and other considerations. We expect our conclusions to apply in reality at
least to head and mid search queries. Whether they apply to tail queries where data
sparsity issues might arise is an open question to be settled by empirical research.

2.2 Examples

Example 1 (Every refinement is distinguishing) If all advertisers competing for any
query ¢ belong to the same part in 7 and so appear equally relevant, then every
refinement of T is distinguishing.

As a concrete example, focus for simplicity on a single query. Consider the auc-
tion described in the introduction in which two pizzerias — the first located in San
Francisco (SF) and the second in San Jose (SJ) — compete for a single advertisement
slot next to search results for a query ‘pizza’ by a Bay Area user. Let T be a coarse
prediction scheme in which both pizzerias appear equally relevant, i.e., both query-
advertiser pairs belong to the same part 7 € T'. Let the corresponding relevance be
pi = 3/4. Now assume the search engine has access to a more precise location fea-
ture of the query ¢, indicating whether the user is in SF or in SJ, and each occurs
with equal probability 1/2. When the prediction scheme is refined by including this
feature, the relevances according to the refined scheme T behave antisymmetrically,
and the realized values are:

User from SF User from SJ City unknown
Advertiser 1 PSF,1V] = V] ps1ivE = v1/2 p1v] = 3v1 /4
(from SF)
Advertiser 2 PSF2v2 = 12/2 Psi2v2 = 12 pav2 =302/4
(from SJ)

In both cases it can be observed that the refined relevances are either spread or
flipped with respect to p1, pa.

Example 2 [A non-distinguishing refinement] Consider again a single-slot position
auction for a query ‘pizza’. Assume now that advertiser 1 is a nationwide chain of
pizzerias whose relevance does not depend on user location, while advertiser 2 is a
local artisan pizzeria in SF. Consider a coarse prediction scheme T as above, and a
refinement 7 where this time the refining feature indicates whether ¢ = SF (happens
with probability 1/4 — § for § = 15¢/(8 — 20¢) and some small €) or ¢ = —SF
(happens with probability 3/4 + §). The realized values are:

User from SF User not from SF City unknown
Advertiser 1 psE.1v1 = 4v1/5 p-sk.1v1 = 4v1/5 p1v1 = 4v1/5
(chain)
Advertiser 2 DPspav2 = 202/5 D—SF.2V2 = €12 pav2 = v3/10
(from SF)
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Refinement T is not distinguishing, since the relevances for ¢ = SF are neither
spread nor flipped with respect to p1, p>.

3 Trade-off Optimal Mechanisms
3.1 Bayesian Mechanism Design

Section 3.1 contains mechanism design preliminaries in the ad auction context; the
expert reader may wish to skip to Section 3.2.

Virtual Values Given a private value v; ~ F, the inverse hazard rate is 2w =
(1 — F(v;))/f (v;) and the virtual value is ¢ (v;) = v; — AF (v;). Similarly, given a
realized value r;, let G with density g be the distribution from which r; is drawn; the
realized virtual value is then goG(r,-) =r — AG(ri). Since r; = p;v;,

G(ri) = F(i), 8(ri) = 5 f (i), 9% (ri) = pio” (), M
where the expression for g(r;) follows by deriving F (%). From now on, we omit
the distribution and value from the notation where clear from context, and follow the
convention that ¢ (v;) or ¢; is the virtual value, and ¢ (r;) is the realized virtual value.

A distribution F is MHR (montone hazard rate) if its inverse hazard rate function
A(-) is weakly decreasing,” and regular if its virtual value function ¢(-) is weakly
increasing. In other words, F is MHR if for every pair of values vy, v ~ F such
that v; > v», their inverse hazard rates A1, Ay are flipped: vi/vo > 1 > Ay/A2. It
immediately follows that their virtual values @1, ¢» are spread with respect to vy, va:

1 <vi/v2 < @1/@2. (2)

We say that values are MHR (resp., regular) if they’re drawn from an MHR dis-
tribution, and that a position auction is MHR if its advertisers’ values are MHR. By
(1), MHR (resp., regular) values imply MHR realized values.

Efficiency-Optimal and Revenue-Optimal Mechanisms A mechanism is com-
posed of an allocation rule, which matches bidders to slots (possibly randomly),
and a pricing rule, which charges them for their allocation. Let x; ;j(v) denote the
probability with which bidder i wins slot j given a reported value (bid) profile
v = (v1, ..., v;). Note that we focus on deterministic mechanisms in which x; ;(v)
is an indicator € {0, 1}. The efficiency (also known as welfare) of a mechanism with
this allocation rule is

Zx,',j (V)v,"j = in’j (V)V,'Sj. 3)
i,j i,j

7The assumption of MHR values is common in the mechanism design literature (see, e.g., [17]). Many
often-studied distributions are MHR, including the uniform, exponential and normal distributions, and
those with log-concave densities [9].
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A mechanism is (dominant-strategy) truthful if for every bidder i with true value
v;, alternative value report v; and reported value profile v_; of other bidders, the
utility (value minus payment) of bidder i for reporting his true value v; is at least
his utility for reporting v;. A mechanism is (ex post) individually rational (R) if for
every truthful bidder i and reported value profile v, the utility of bidder i is non-
negative. In what follows we do not distinguish between values and reported values
(bids) since we focus on truthful IR mechanisms.

We say that an allocation rule x; ; (v) is monotone if as v; increases, bidder i is only
allocated higher slots. The following lemma is an adaptation of results by Myerson
to the sponsored search context.

Lemma 1 (Myerson [21])

1. Every monotone allocation rule can be coupled with a unique threshold pricing
rule such that the resulting mechanism is truthful and IR.3

2. The expected revenue of every truthful and IR mechanism is equal to its expected
realized virtual surplus, i.e.,

By | > xijMei(ri)s; | - )

iJ

The well-known Vickrey-Clarke-Groves (VCG) auction maximizes efficiency for
every value profile [3, 13, 27]. In the context of position auctions, VCG allocates the
slots to the n advertisers with highest realized values r;, in high to low order [1]. We
assume throughout that ties are broken lexicographically. Observe that this allocation
rule is monotone, and so by the first part of Lemma 1, with appropriate payments we
get a truthful and IR mechanism. The VCG allocation rule maximizes the efficiency
as appears in (3) by the standard rearrangement inequality (see Lemma 2 below),
applied to the two weakly decreasing vectors of sorted realized values r and slot
effects s.

The Myerson mechanism maximizes expected revenue among all truthful and IR
mechanisms ([21], cf. [7, 14]).2 When values are regular, the Myerson mechanism
allocates slots to the < n advertisers with highest non-negative realized virtual val-
ues ¢;(r;), in high to low order. By regularity this allocation rule is monotone, and
so by the first part of Lemma 1, with appropriate payments we get a truthful and
IR mechanism. The Myerson allocation rule maximizes the realized virtual surplus —
and thus by the second part of Lemma 1 the expected revenue — by the standard rear-
rangement inequality applied to the two weakly decreasing vectors of sorted realized
virtual values (¢; (r;)); and slot effects s.

For completeness we now state (a version of) the rearrangement inequality. We
say that v is a partial ranking of an n-element vector x if it ranks a subset of n’ < n

8For our purpose we need not specify the pricing rule, because the second part of this lemma gives us a
handle on revenue even without knowing the precise price form.

9In fact, it maximizes expected revenue among a larger class of mechanisms — Bayesian truthful and IR
mechanisms.
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elements, which we refer to as acceptable. We denote by x(;r) a vector of length n
in which the first n” entries are the acceptable elements ranked by 7, and the rest are
zero entries. We denote by x™ a vector in which the negative entries of x have been
replaced by zeros.

Lemma 2 (Rearrangement inequality) Let s > 0, X be two weakly decreasing vec-

tors. For every partial ranking w of X such that X(ir) > 0 it holds that s - x(w) <
+

S-XT.

3.2 Trade-off Optimality

We now define a class of virtual value based mechanisms, of which the VCG auction
and the Myerson mechanism are extremal members. We apply a result of Myer-
son and Satterthwaite to the sponsored search context, showing that mechanisms in
this class optimize any efficiency-revenue trade-off [16, 22]. Such mechanisms are
termed trade-off optimal, and their outcomes lie on the Pareto frontier of efficiency
and revenue. '”

Our interest in trade-off optimal mechanisms stems from our belief that search
engines aim to optimize some convex combination of efficiency and revenue. While
commercial search engines are “revenue maximizers”, the “revenue” they aim to
maximize is not just the short-term revenue referred to in this paper; rather, they
care about a combination of revenue and efficiency, due to their interest in the long-
term health and efficiency of sponsored search markets. As discussed in [16] in
the context of multi-unit auctions, trade-off optimal mechanisms can also be used
to to maximize expected welfare subject to a minimum constraint on the expected
revenue.

Definition 5 [«-virtual value] For a > 0, the a-virtual value of v ~ F is ¢%(v) =
v — arf (v) (where A is the inverse hazard rate).

The «-virtual value of v can be rewritten as a combination of v and its correspond-
ing virtual value: ¢*(v) = (1 — a)v + a@p(v). The following definition encompasses
the VCG auction (¢ = 0) as well as the Myerson mechanism (o = 1).

Definition 6 («-virtual value based mechanism) For o > 0, the «a-virtual value
based mechanism is a deterministic mechanism which asks the advertisers to report
their values v;, ranks them according to their realized «-virtual values p; <plf" , and allo-
cates the slots to those ranked highest with non-negative p;¢;". The allocation rule of
the mechanism is coupled with the threshold pricing rule.

10Mechanisms on the efficiency-revenue Pareto frontier are not to be confused with mechanisms that gen-
erate Pareto optimal outcomes, in which no bidder’s utility can be increased without decreasing another’s.
Diakonikolas et al. study computational complexity aspects of the Pareto frontier; the difference between
their work and ours is that we focus on trade-off optimal mechanisms, which are not required to realize
every point on the Pareto optimal curve.
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Lemma 3 (Truthfulness) For 0 < o < 1 and regular values, the a-virtual value
based mechanism is truthful and IR.

Proof By regularity, 9* = (1 —a)v+ae@(v) is weakly increasing in v when 0 < o <
1, thus the allocation rule is monotone; truthfulness and IR follow from Lemma 1.

O
Lemma 4 (Trade-off optimal mechanisms) Consider a regular position auction.'!
For 0 < a < 1, the optimal mechanism for the objective

(1 — a)Elefficiency] + aE[revenue] ®))

among all truthful and IR mechanisms is the a-virtual value based mechanism.

Proof From Myerson’s results applied to sponsored search (Lemma 1), it follows
that the optimal mechanism for the objective maximizes the realized «-virtual
surplus. The standard rearrangement inequality (Lemma 2) ensures that the opti-
mal mechanism is the «-virtual value based mechanism, which is truthful and IR
(Lemma 3).

In more detail, the optimal mechanism for the objective in (5) must maximize the
following expression, obtained by applying the second part of Lemma 1 to get an
expression for the expected revenue:

(L= ) Ey[ Y vi jxi j D]+ @By [Y 501 ()i j (V)]
i,j i,j
=By xij(V) - (1= )sjri + asjoi(r)]
iJ
Therefore, by the rearrangement inequality shown in Lemma 2, the optimal allo-
cation rule picks up to m bidders with highest non-negative combinations (1 —
a)ri + ap;(r;), and assigns them one by one to the highest slots. This is pre-

cisely the «-virtual value based mechanism, which is guaranteed to be truthful by
Lemma 3. [

4 Refinement Effects on Auction Objectives

Our starting point is an observation regarding the search engine’s incentive to per-
form refinement. Recall from Section 3.2 that we assume the search engine aims
to optimize a fixed trade-off between revenue and efficiency. We observe that in
expectation, refinement helps this objective, thus generalizing a previous result of

1A similar result holds for irregular position auctions, by replacing realized a-virtual values with their
ironed counterparts.
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Fu et al. beyond revenue maximization [10].!? This indicates that up to practical
limitations, the search engine would prefer as refined a prediction scheme as possible.

Before we present the formal statement of this result, we argue that it has merit
beyond the intuitive fact that more information (in the form of refinement) can only
help since it can always be discarded. This intuitive argument is not quite sufficient
to prove the statement in Lemma 5 below, because we are considering a particular
mechanism — the trade-off optimal mechanism — which was not explicitly designed
to optimize the use of available information. The trade-off optimal mechanism uses
given distributions to compute realized «-virtual values (see Definition 5), and it is
not clear a priori whether the performance of this mechanism would benefit or not
from using refined/coarse distributions. The result in [10] and its generalization in
Lemma 5 show that on average over the extra information, using more information
and thus refined distributions is better for the objective.

Lemma 5 (Refinement improves trade-off) Let prediction scheme T be a refinement
of scheme T, and let q be a query belonging to a coarse partt € T. Then with respect
to its objective, a trade-off optimal mechanism M performs as well for g with scheme
T as with T, in expectation over value profiles and over the refined partt € T to
which q belongs.

Proof The proof follows from the fact that the trade-off optimal mechanism M is
a-virtual value based (Lemma 4), combined with the proof of Proposition 3 of Fu
et al. [10] in which, mutatis mutandis, the notion of value is replaced with that of
a-virtual value. O

We now turn to the effect of refined relevance prediction on the efficiency guar-
antees of trade-off optimal mechanisms. In our main technical result, we identify
natural conditions under which refining the prediction improves the efficiency of any
trade-off optimal mechanism. The proof appears in Section 4.1.

Theorem 1 (Refinement improves efficiency) Let prediction scheme T be a dis-
tinguishing refinement of scheme T. Consider a set of bidders whose values are
i.i.d. and satisfy MHR, and a position auction for a query q. Then with respect
to social efficiency, a trade-off optimal mechanism M performs as well for q with
scheme T as with T, for every value profile of the advertisers.

It is instructive to compare the two above results. Lemma 5 is less conditional,
that is, the conditions of i.i.d., MHR values and distinguishing refinement are not
required. On the other hand, Theorem 1 holds entirely pointwise, that is, it does not
require averaging over the value profiles or query types. The fact that Theorem 1
requires more conditions, whose necessity is discussed in Section 5 by analyzing
Examples 1 and 2, indicates a non-trivial trade-off between efficiency and revenue:

12Note however that the result of Fu et al. [10] applies to completely general signals whereas we focus on
the linear form standard in the context of sponsored search.
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When the search engine is optimizing for a combination of efficiency and revenue,
refining “ad infinitum” will not always be the right thing to do in terms of social
efficiency. This can be the case, for example, if the refinement is indistinguishing.
On the flip side, when the conditions of Theorem 1 hold, the social interest is aligned
with that of the search engine; prediction refinement is in both their best interests
since it simultaneously increases social efficiency and its combination with revenue.
This is formalized in Corollary 1, which is a direct consequence of Lemma 5 and
Theorem 1.

Corollary 1 Let prediction scheme T be a distinguishing refinement of scheme T,
and let q be a query belonging to part t € T. Consider a set of bidders whose values
are i.i.d. and satisfy MHR, and a position auction for q. Then with respect to both its
objective and social efficiency, a trade-off optimal mechanism M performs as well
for q with scheme T as with T, in expectation over value profiles and the partt € T
to which g belongs.

In particular, mechanism M in Corollary 1 can be the revenue-optimal Myerson
mechanism, for which a distinguishing refinement improves both efficiency and rev-
enue. It is an interesting question whether there are additional mechanisms for which
this desirable property of simultaneous improvement holds.

What is the importance of simultaneous improvement? Understanding the align-
ment between the objectives of welfare and revenue has attracted much attention
in the theoretical literature (see, e.g., [2, 4, 5, 16, 23, 25]). This is grounded in the
understanding that auctioneers aim to optimize their short-term goals without com-
promising their contribution to welfare (achieved, in this case, by delivering the most
relevant set of ads to the users). Corollary 1 shows when refinement is in line with
this two-fold aim.

Application to Signaling The above results are closely related to signaling of seller
information in auctions, studied in the economic literature since the seminal work
of Milgrom and Weber [19], and more recently in the computer science literature
starting with [8, 11, 20]. The seller can adopt a signaling scheme by which he commu-
nicates his information to the bidders, who adjust their realized values accordingly. In
the sponsored search context, the features which determine advertiser relevance can
be viewed as the seller’s information, making it a special case in which the effect of
the information on values is multiplicative, and refinement is equivalent to revealing
more of the seller’s information. To our knowledge, this mathematical equivalence
between prediction and signaling schemes has not been previously observed.

One difference between prediction and signaling is in who updates the val-
ues according to the information. In prediction, the seller internalizes this process,
combining the information with the bidders’ reports to get realized values. Thus
refinement must affect values in a way that is completely known to the seller; this is
not necessarily the case in the classic signaling context.

Our results apply to settings to which the fundamental Linkage Principle does
not, due to the inherent asymmetry of advertiser relevance (indeed, it is not hard to
see that refinement may decrease the expected revenue of mechanisms such as the
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second-price auction). Our main result stated in the context of signaling is that if
releasing information distinguishes among i.i.d. MHR bidders, then it improves both
the expected outcome of a Pareto optimal mechanism and its efficiency.

4.1 Proof of Theorem 1

Refinement has a delicate effect in the context of ad auctions. The transformation of
values to realized values using different relevance terms causes the revenue-optimal
ranking to differ from the efficieny-optimal one, even under assumptions of i.i.d. and
MHR. This is in contrast to simple single-item multi-unit settings, where the revenue-
and efficiency-optimal rankings both order bidders in the same way, and differ only
in that the former excludes bidders with negative virtual values. In this section we
show that the difference between the two rankings in sponsored search diminishes
with refinement, as long as the conditions stated in Theorem 1 hold. In fact we show
this for any trade-off optimal ranking according to «-virtual values, in addition to the
revenue-optimal one where o = 1.

Before proving Theorem 1 we present two lemmas. Throughout, fix a query g
and let prediction scheme T be a distinguishing refinement of a scheme 7. The first
lemma shows that if according to T, advertiser 1 has lower realized value but higher
realized «-virtual value in comparison to advertiser 2, then the same holds accord-
ing to T. This indicates that any inefficiency due to the trade-off optimal ranking
according to T occurs according to T as well, and so refinement can only increase
efficiency.

Lemma 6 (Inefficient allocation) Consider two advertisers with i.i.d. MHR values
Vi # v2, and a-virtual values ¢, ¢5. Let p1, py be their relevance predictions
according to T, and p1, pa their relevance predictions according to T. Then

p1 < p2and p1¢f = p2gy >0 = p1o] > pry;.

Proof First observe that by the i.i.d. MHR assumption, the a-virtual values ¢}, ¢5
are spread with respect to the values vy, vy (cf. (2)). We rewrite the two inequalities
on the left-hand side as:

oy /93 = p2/p1 > vi/va > 1, (6)

where the last inequality follows since otherwise the «-virtual values would not be
spread with respect to the values. Since T is a distinguishing refinement, the pair
P1, p2 is spread or flipped with respect to p, p», and so (recall Definition 3)

p2/p1 > 1 = p2/p1 = p2/p1. @)
Equations (6) and (7) combined show that p1¢{ > pa¢5, completing the proof.
O

The second lemma is a generalization of the standard rearrangement inequality (as
stated in Lemma 2). Let 71, 5 be two partial rankings of an n-element vector x. We
say 7y is more ordered than 1y if: (1) the same elements are acceptable in both; and
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(2) for every pair of acceptable elements x; > x; such that x; appears before x; in
x(77), this pair also appears in the correct order in x(71).

Lemma 7 (Generalized rearrangement inequality) Ler s > 0,X be two weakly
decreasing vectors, and let w1, > be two partial rankings of X such that | is more
ordered than my, and x(71), X(7m2) > 0. Then s - x(7r1) > s - X(7m2).

Proof We first prove the lemma assuming that mq, 7, are identical except for two
acceptable elements x; > x;, which appear consecutively in both x(771) and x(72),
but in flipped order. Note that since 71 is more ordered, x; must appear before x; in
x(7Ty).

Using 7 (x;) to denote the rank of element x; according to =, if k = 71 (x;), then
m1(xj) = ma(x;) = k+ 1 and m2(x;) = k. For rankings as above, to prove that
S-X() > s-x(72) it’s sufficient to show that sgx; + sgy1x; > spxj + sg41%;. Since
x; > x; > 0 and s is decreasing, this holds by the standard rearrangement inequality
(Lemma 2).

We now turn to general partial rankings 7y, 7o where m; is more ordered, and
conceptually run a “bubble sort” on x(;2) to turn 7 step by step into 7 (this is
possible since the same elements are acceptable in both rankings). In every step, we
compare a pair of adjacent acceptable elements in x(7r5) and swap them if their order
does not match their order according to 1. This results in a new partial ranking 7.
Notice that two advertisers are swapped only if they’re in the wrong order, and so 1}
is more ordered than 7>. We can thus apply the above proof for identical rankings
up to consecutive flipped elements to 7, and 75, and get that s - X(5) > s - X(712).
Thus s - x(7r2) is weakly increasing with each step of the bubble sort, completing the
proof. O

We are now ready to prove Theorem 1.

Proof of Theorem 1 Consider n advertisers with i.i.d. MHR values v, competing for
m > n ad slots to appear along search results for a query g. For every advertiser
i, let p; be the relevance prediction according to T, and let p; be the prediction
according to the distinguishing refinement 7. We want to show that with respect to
social efficiency, the trade-off optimal mechanism M performs better with 7' than
with T.

For simplicity, rename the advertisers such that their true realized values, i.e., those
according to the refined scheme T, are in decreasing order pjv; > --- > puv,.
(These are the true realized values since they are based on an accurate prediction
of the click-through rates, and so reflect the true added efficiency from allocating a
slot to each advertiser). The advertisers are now ordered according to the efficiency-
optimal ranking.

We know that M is a-virtual value based for some « (Lemma 4). It thus ranks the
advertisers by their realized «t-virtual values — either p; ¢} if using scheme T,or pio}
if using scheme 7. Let w1 be the partial ranking of advertisers with non-negative
a-virtual values according to T, and let 77> be the same according to T.
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We first claim it is sufficient to show that, as partial rankings of the advertisers
and their true realized values r = (p1v1, ..., pnVn), 71 is more ordered than 7r>. The
sufficiency follows from the generalized rearrangement inequality (Lemma 7): Both
r and the vector of slot effects s are decreasing, so if 71 is more ordered than 7> it
holds that s-r(r1) > s-r(m), i.e., the efficiency of M with T is at least its efficiency
with T

It’s left to show that 7; is more ordered than m,. First observe that advertiser
i is acceptable according to either partial ranking if and only if his (non-realized)
«-virtual value (plf" is non-negative, and so | and m; rank the same subset of adver-
tisers as acceptable. Now consider a pair of acceptable advertisers i, j ((pl‘?’, <p;’.‘ > 0),
whose realized values are r; = p;v; < pjv; = r;. We claim that if their rank-
ing according to m; is reversed (i appears before j even though his realized value
is lower), then this will also be the case according to 77, and so w7 is indeed more
ordered.

If the ranking according to 7y is reversed then we know that p;¢? > p; (p‘j?‘. We
can now invoke Lemma 6 to get p;¢ > p jgoj.‘ (note that while Lemma 6 requires
that @7, <p‘]).‘ are both positive, if at least one of these is zero then the inequality holds
trivially). We have shown that advertiser i is ranked before j in m>, completing the
proof. O

5 Discussion and Future Directions

In this section we discuss the necessity of Theorem 1’s assumptions, namely,
i.i.d. MHR values and a distinguishing prediction refinement. We show the assump-
tions are necessary in a “worst-case” sense: if an assumption is violated, there’s a
setting in which prediction refinement harms expected efficiency, where expectation
is taken over value profiles as well as over the refined subpart to which the query
belongs (this rules out even a non-pointwise but less conditional version of Theorem
1). However, we expect that in many other non-worst-case settings, refinement will
still contribute to efficiency despite the violated assumption. We demonstrate this
below but leave the question of identifying when the assumptions can be weakened as
an open problem. The settings below are based on Examples 1 and 2 in Section 2.2,
in which there are two advertisers and a single ad slot, and use the revenue-
optimal Myerson mechanism. We conclude with additional directions for future
research.

5.1 Revisiting Example 2

We return to Example 2 in which the refinement was non-distinguishing. Recall
that taking into account the user location could possibly make the two advertisers
seem more alike, and thus in more direct competition. To take advantage of this, the
revenue-optimal mechanism sometimes allocates to the advertiser with lower realized
value, increasing the expected revenue but decreasing the efficiency.

As a result, the assumption of a distinguishing refinement is necessary in a
strong sense for a pointwise statement such as Theorem 1. That is, for every
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(non-degenerate) MHR distribution, there exist valuations for which efficiency of the
revenue-optimal mechanism falls with non-distinguishing refinement.

Moreover, for a specific selection of relevance parameters, refinement and value
distribution, efficiency loss can happen in expectation when the distinguishing refine-
ment assumption is violated. We use the relevance parameters from Example 2,
and assume that the values vy, vy are drawn independently from the MHR uniform
distribution over range [3,5]. The ranges of the realized values and virtual val-
ues are as follows: For advertiser 1, since his relevance prediction is 0.8 whether
or not the prediction scheme is refined, his realized value range is [2.4,4] and
his virtual value range is [0.8,4]. As for advertiser 2, there are three cases to
consider:

1. User from SF and refined scheme T applied — realized value range is [1.2, 2] and
virtual value range is [0.4, 2];

2. User not from SF and refined scheme T applied — realized value range is [3€, 5¢]
and virtual value range is [€, 5¢];

3. Coarse scheme T applied — realized value range is [0.3, 0.5] and virtual value
range is [0.1, 0.5].

We conclude that applying the refined prediction scheme 7" which uses the loca-
tion data lowers the expected welfare: Observe that the realized value of the advertiser
1 is always higher, and when T is applied his virtual value is always higher as well,
guaranteeing an efficient allocation. But when the user is from SF, the relevance
predictions of the advertisers become closer, and the range of advertiser 2’s refined
virtual value overlaps that of advertiser 1, and so advertiser 2 sometimes wins despite
this being inefficient.

How often would we expect such inefficienies due to non-distinguishing refine-
ments in general? Assuming the setting of parameters as above, suppose we vary
the second advertiser’s relevance from 0 towards 0.8, and plot efficiency loss against
the optimally efficient outcome; see Fig. 2. As the figure shows, several refinements
that are not distinguishing would still result in an efficiency increase. For instance,
any refinement where p > 0.4 and p; is in the range [p>, 0.8] would cause an
efficiency increase. However, when p» < 0.4 and p» is in the range [p>, 0.4], the
corresponding refinement causes an efficiency drop. Thus, we would expect that
if the relevances of advertisers were initially roughly comparable (recall that for
the first advertiser, p;y = p; = 0.8), any refinement ought to improve expected-
efficiency.

Remark 2 (Non-L.i.d.) Example 2 can also be adjusted such that the resulting setting
is completely equivalent, but now 7 is a distinguishing refinement of 7. This is
by noticing that if advertisers are allowed to have non-i.i.d. values, a distinguishing
refinement can actually make them more similar. For example, let advertiser 2’s value
be uniform over [1.2, 2] instead of [3, 5], and assume that finding out the user is from
SF makes the advertisers’ relevances flip from, say, 0.8,0.25 to 0.8,1. The ranges
of their realized values however get closer, and the virtual value ranges overlap as
above, leading to inefficiency. Thus the assumption of i.i.d. values is also in some
sense necessary.
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Efficiency loss as a function of second ads' relevance.

loss

T T T T T
0.0 0.2 0.4 0.6 0.8
relevance of second ad

Fig. 2 Efficiency loss as a function of relevance

5.2 Revisiting Example 1

We demonstrate that refinement may decrease efficiency when values are non-
MHR. We emphasize that this is not equivalent to demonstrating the necessity of the
MHR assumption; indeed, there may be an alternative assumption that more tightly
encircles the scenarios under which our main result holds.

To show what goes wrong, we analyze the expected loss in efficiency due to refine-
ment and due to coarseness — see (8) and (9) below. This enables us to calculate and
compare these two expected losses for a specific value distribution F', a truncated and
shifted variant of the equal revenue distribution Fv)=1- % which is non-MHR
but regular.

Specifically, let H = 103 be a truncating parameter and b = —1 a shifting param-
eter. Let F be the variant of the equal revenue distribution achieved by truncating its
support from [1, oo) to [1, H] (the truncation ensures that F' has finite expectation),
and shifting it to the right by |b|. (Note that if H = oo and b = 0 we get the standard
equal revenue distribution.)

We revisit the setting of Example 1 in which advertiser 1 is from SF and adver-
tiser 2 from SJ. We assume the user is from SJ (the other case is symmetric). For the
analysis, we fix values v > v’ > 0 but do not specify which value belongs to which
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advertiser; by symmetry both possibilities are equally probable. Let ¢, ¢’ be the vir-
tual values, where by regularity ¢ > ¢’ > 0 (we assume ¢’ is non-negative and ¢ is
positive, since otherwise refinement changes neither allocation nor efficiency). Then
the expected loss in efficiency from inefficiencies due to refinement is

1 Umax v
—/ /2 = V) f) fW)dvdv, (8)
2 Umin v

where [Umin, Umax] 1S the range of distribution F, and v is defined to be the value
such that the corresponding virtual value ¢(v) is equal to 2¢’. The expected loss in
efficiency from inefficiencies due to coarseness is

1 Umax 20
E/, f W' —v/2) f(v) f(V)dvdv'. ©

Calculation of the integrals show that the expected efficiency loss due to refine-
ment surpasses in this case the loss due to coarseness.

5.3 Implications for Real-World Search Auctions

We conclude with two future research directions aimed at closing any gaps between
the theoretical contribution in this paper and actual implications for real-life search
auctions.

First, in practice, not all improvements to prediction accuracy are achieved by
adding features. Certainly, the addition of new features can be a dominant factor, but
there are also algorithmic improvements, more accurate click models, etc. This paper
provides a starting point for studying the high-level question of whether predicting
more accurately leads to better auction outcomes, and an open question is to provide
a generalized model and analysis in order to understand whether our results extend
to other improvements in prediction accuracy besides refinement.

Second, this paper provides theoretical guidelines to search auction designers
when contemplating the interaction between click prediction and auctions. Namely,
it introduces a desired “flip-spread” effect of refinement that should serve as a guid-
ing factor in deciding whether to refine. An open direction is to test these guidelines
empirically, by comparing between bidder relevance before and after adding features,
analyzing how often the effect is a distinguishing one, and testing the correlation
between this and between how well the auction achieves its objectives.
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